If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-90x+104=0
a = 1; b = -90; c = +104;
Δ = b2-4ac
Δ = -902-4·1·104
Δ = 7684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7684}=\sqrt{4*1921}=\sqrt{4}*\sqrt{1921}=2\sqrt{1921}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1921}}{2*1}=\frac{90-2\sqrt{1921}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1921}}{2*1}=\frac{90+2\sqrt{1921}}{2} $
| –20=4y | | 80x=192(17-x) | | 5+x/8=4 | | 2x^2/4+7=39 | | 192x=80(17-x) | | 5(4w-1)+1=5w+41 | | 9(v-2)=-9v+18 | | 7y+3=-38 | | 5(x+3)-2(x-1)=0 | | 10+6x+2=18 | | 2x^2-7=101 | | -2(5x+1)=-10x+4 | | 21(x-5)+2x=-55-(x-2) | | 9v+30=5v+6 | | -3(x+4)+2=5(x-3)-7x+11 | | 13x-x+5-x=12x | | 216=5(1+6b)+1 | | 2y2-y+2=0 | | -2x-4=5(1-x) | | -x+6=-2,5x+21 | | 4(2x+12)=16x | | -4(6+-2n)=-8n-24 | | 2/3=(x+15)/33 | | 0=10(2)+(-3x)+(-4)+2(-2)+2(1) | | 9−4h=3−4h | | -2(-8v+2)-3v=7(v-1)-5 | | 3x/4=28 | | 7(6+d)=49 | | 0=10+5x+2 | | X^2-2x=x+28 | | 2n-35=77-6 | | 0=10(2)=(-3x)+2(-1) |